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‘ VLSI communication networks are wire limited. The cost of a network is not a function of ¥
- the number of switches required, but rather a function of the wiring density required to 1
construct the network. This paper analyzes communication networks of varying dimension ::

under the assumption of constant wire bisection. Expressions for the latency, average case

throughput, and hot-spot throughput of k-ary n-cube networks with constant bisection are ]
derived that agree closely with experimental measurements. It is shown that low- "
dimensional networks (e.g., tori) have lower latency and higher hot-spot throughput than R4
high-dimensional networks (e.g., binary n-cubes) with the same bisection width. i
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Abstract

= VLSI communication networks are wire limited. The cost of a network is not a function of the number

of switches required, but rather a function of the wiring density required to construct the network. This
paper analyses communication networks of varying dimension under the assumption of constant wire
bisection. Expressions for the latency, average case throughput, and hot-spot throughput of k-ary n-
cube networks with constant bisection are derived that agree closely with experimental measurements.
It is shown that low-dimensional networks (e.g., tori) have lower latency and higher hot-spot throughput
than high-dimensional networks (e.g., binary n-cubes) with the same bisection width. .

; ds:
. Keywor s

multiprocessors; parallel processing, VEST. ~. Livga oo e et L

’/
> Communication networks, interconnection networks, concurrent computing, message-passing

1 Introduction

The critical component of a concurrent computer is its commaunication network. Many al-
gorithms are communication rather than processing limited. Fine-grain concurrent programs
execute as few as 10 instructions in response to a message [5]. To efficiently execute such pro-
grams the communication network must have a latency no greater than about 10 instruction
times, and a throughput sufficient to permit a large fraction of the nodes to transmit simul-
taneously. Low-latency communication is also critical to support code sharing and garbage
collection across nodes.

IThe ressarch described in this paper was supported in part by the Defense Advanced Research Projects
Ageacy under contracts N00014-80-C-0622 and N00014-85-K-0124 and in part by a National Science Foundation
Presideatial Youag Iavestigator Award with matching funds from General Electric Corporation.

3 A preliminary version of this paper appeared ia the procesdiags of the 1987 Staaford Coaference ca Advaaced
Research in VLSI [8). .
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As the grain size of concurrent computers continues to decrease, communication latency becomes
a more important factor. The diameter of the machine grows, messages are sent more frequently,
and fewer instructions are executed in response to each message. Low latency is more difficult
40 achieve in a fine-grain machine because the available wiring space grows more slowly than
the expected traffic. Since the machine must be constructed in three dimensions, the bisection
area grows only as N § while traffic grows at Jeast as fast as NV, the number of nodes.

VLSI systems are wire limited. The cost of these systems is predominantly that of connecting
devices, and the performance i¢ limited by the delay of there interconncctions. Thus, to achieve
the required performance, the network must make efficient use of the available wire. The
topology of the network must map into the three physical dimensions so that messages are
not required to double back on themselves, and in a way that allows messages to use all of the
available bandwidth along their path.

This paper considers the problem of constructing wire-efficient communication networks, net-
works that give the optimum performance for a given wire density. We compare networks
holding wire bisection, the number of wires crossing a cut that evenly divides the machine, con-
stant. Thus we compare low dimensional networks with wide communication channels against
high dimensional networks with narrow channels. We investigate the class of k-ary n-cube in-
terconnection networks and show that low-dimensional networks out perform high-dimensional
networks with the same bisection width.

The remainder of this paper describes the design of wire-efficient communication networks.
Section 2 describes the assumptions on which this paper is based. The family of k-ary n-cube
networks is described in Section 2.1. We restrict our attention to k-ary n-cubes because it is the
dimension of the network that is important, not the details of its topology. Section 2.2 introduces
wormhole routing (18], a low-latency routing technique. Network cost is determined primarily
by wire density which we will measure in terms of bisection width. Section 2.3 introduces the
idea of bisection width, and discusses delay models for network channels. A performance model
of these networks is derived in Section 3. Expressions are given for network latency as a function
of traffic that agree closely with experimental results. Under the assumption of constant wire
density, it is shown that low-dimensional networks achieve lower latency and better hot-spot
throughput than do high-dimensional networks.

2 Preliminaries

2.1 k-ary n-cubes

Many different network topologies have been proposed for use in concurrent computers: trees
(4] [13] [19], Benes networks(3], Batcher sorting networks [1], shuffie exchange networks [21],
Omega networks [12], indirect binary n-cube or flip networks [2] [20), and direct binary n-cubes
(17), (15}, [22]. The binary n-cube is a special case of the family of k-ary n-cubes, cubes with n
dimensions and k nodes in each dimension.

Most concurrent computers have been built using networks that are either k-ary n-cubes or
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:‘, Figure 1: A Binary 6-Cube Embedded in the Plane '
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\ ]
,:-‘ are isomorphic to k-ary n-cubes: rings, meshes, tori, direct and indirect binary n-cubes, and '

Omega networks. Thus, in this paper we restrict our attention to k-ary n-cube networks. We
refer to n as the dimension of the cube and k as the radiz. Dimension, radix, and number of

5:' nodes are related by the equation X
o] .
b N=k" (k= VN, n=log,N). (1) ]
X w ¥
. (-. It is the dimension of the network that is important, not the details of its topology. '
)
: A node in a k-ary n-cube can be identified by an n-digit radix k address, ao,...,an-1. The \
\‘.! i*® digit of the address, a;, represents the nodes position in the ith dimension. Each node '
Q: can forward messages to its upper neighbor in each dimension, ¢, with address, ao,...,a; + ;
1(mod k),...,8n-3.
t‘,:. In this paper we assume that our k-ary n-cube are unidirectional for simplicity. We will see z
Y that our results do not change appreciably for bidirectional networks. For an actual machine, i
o however, there are many compelling reasons to make our networks bidirectional. Most impor- )
y tantly, bidirectional networks allow us to exploit locality of communication. If an object, A

sends a message to an object, B, there is a high probability of B sending a message back to A.
W In a bidirectional network, a round trip from A to B can be made short by placing A and B
K close together. In a unidirectional network, a round trip will always involve completely circling
K, the machine in at least one dimension. f
)
'-! Figures 1-3 show three k-ary n-cube networks in order of decreasing dimension. Figure 1
> shows a binary 6-cube (64 nodes). A 3-ary 4-cube (81 nodes) is shown in Figure 2. An 8-
N ary 2-cube (64 nodes), or torus, is shown in Figure 3. Each line in Figure 1 represents two
i; communication channels, one in each direction, while each line in Figures 2 and 3 represents a
G single communication channel.
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Figure 4: Latency of store-and-forward routing (top) vs. wormhole routing (bottom).

2.2 Wormbhole Routing

In this paper we consider networks that use wormhole{18] rather than store-and-forward [23]
routing. Instead of storing a packet completely in a node and then transmitting it to the next
node, wormhole routing operates by advancing the head of a packet directly from incoming to
outgoing channels. Only a few flow control digits (flits) are buffered at each node. A fiit is the
smallest unit of information that a queue or channel can accept or refuse.

As soon as a node examines the header flit(s) of a message, it selects the next channel on
the route and begins forwarding flits down that channel. As flits are forwarded, the message
becomes spread out across the channels between the source and destination. It is possible for
the first flit of a message to arrive at the destination node before the last flit of the message
has left the source. Because most flits contain no routing information, the flits in a message
must remain in contiguous channels of the network and cannot be interleaved with the flits of
other messages. When the header flit of a message is blocked, all of the flits of a message stop
advancing and block the progress of any other message requiring the channels they occupy.

A method similar to wormhole routing, called virtual cut-throug?, is described in [11]. Virtual
cut-through differs from wormhole routing in that it buffers messages when they block, removing
them from the network. With wormhole routing, blocked messages remain in the network.
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Figure 4 illustrates the advantage of wormhole routing. There are two components of latency,
distance and message aspect ratio. The distance, D, is the number of hops required to get from
the source to the destination. The message aspect ratio (message length, L, normalized to the
channel width, W) is the number of channel cycles required to transmit the message across one
channel. The top half of the figure shows store-and-forward routing. The message is is entirely
transmitted from node Nj to node Ny, then from N; to N; and so on. With store-and-forward
routing, latency is the product of D, and ﬁ

L
Tsp =T, (D X W) . (2)
The bottom half of Figure 4 shows wormhole routing. As soon as a flit arrives at a node, it is
forwarded to the next node. With wormhole routing latency is reduced to the sum of D and

%.

Twu =T, (D + -;,—) . (3)

In both of these equations, T is the channel cycle time, the amount of time required to perform
a transaction on a channel.

2.3 VLSI Complexity

VLSI computing systems {14] are wire-limited; the complexity of what can be constructed is
limited by wire density, the speed at which a machine can run is limited by wire delay, and
the majority of power consumed by a machine is used to drive wires. Thus, machines must
be organized both logically and physically to keep wires short by exploiting locality wherever
possible. The VLSI architect must organize a computing system so that its form (physical
organization) fits its function (logical organization).

Networks have traditionally been analyzed under the assumption of constant channel band-
width. Under this assumption each channel is one bit wide (W = 1) and has unit delay
(Te = 1). The constant bandwidth assumption favors networks with high dimensionality (e.g.,
binary n-cubes) over low-dimensional networks (e.g., tori). This assumption, however, is not
consistent with the properties of VLSI technology. Networks with many dimensions require
more and longer wires than do low-dimensional networks. Thus, high-dimensional networks
cost more and run more slowly than low-dimensional networks. A realistic comparison of net-
work topology must take both wire density and wire length into account.

To account for wire density, we will use bisection width {24] as a measure of network cost. The
bisection width of a network is the minimum number of wires cut when the network is divided
into two equal halves. Rather than comparing networks with constant channel width, W, we
will compare networks with constant bisection width. Thus, we will compare low-dimensional
networks with large W with high-dimensional networks with small W.
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Figure 5: A Folded Torus System

St

The delay of a wire depends on its length, /. For short wires, the delay, t,, is limited by charging
the capacitance of the wire and varies logarithmically with wire length.

t, = Navelog, K1, 4)
where 7,y is the inverter delay, and KX is a constant depending on capacitance ratios.

For long wires, delay, #;, is limited by the speed of light.

N
= c' (5)

In this paper we will consider three delay models: constant delay, T. independent of length,

logarithmic delay, T  logl, and linear delay, T, & I. Our main result, that latency is minimized
by low-dimensional networks, is supported by all three models.

3 Performance Analysis

In this section we compare the performance of unidirectional k-ary n-cube interconnection
networks using the following assumptions: '

o Networks must be embedded into the plane. If a three-dimensional packaging technology
becomes available, the comparison changes only slightly.
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o Nodes are placed systematically by embedding % logical dimensions in each of the two
physical dimensions. We assume that both n and k are even integers. The long end-
around connections shown in Figure 3 can be avoided by folding the network as shown in
Figure 5.

o For networks with the same number of nodes, wire density is held constant. Each network
is constructed with the same bisection width, B, the total number of wires crossing the
midpoint of the network. To keep the bisection width constant, we vary the width, W, of
the communication channels. We ncrmalize to the bisection width of a bit-serial (W = 1)
binary n-cube.

o The networks use wormbhole routing.

¢ Channel delay, T, is a function of wire length, . We begin by considering channel delay
to be constant. Later, the comparison is performed for both logarithmic and linear wire
delays; T, o< log! and T, .

When k is even, the channels crossing the midpoint of the network are all in the highest
dimension. For each of the /N rows of the network, there are k(3-1) of these channels in each
direction for a total of 2v/Nk(2-1) channels. Thus, the bisection width, B, of a k-ary n-cube
with W-bit wide communication channels is

B(k,n) = 2Wy/Nk(2-1) = 222 2WN (6)

For a binary n-cube, k = 2, the bisection width is B(2,n) = WN. We set B equal to N to
normalize to a binary n-cube with unit width channels, W = 1. The channel width, W(k,n),
of a k-ary n-cube with the same bisection width, B, follows from (6):

Wan__N
- ’

M
W(k,n)=§.

The peak wire density is greater than the bisection width in networks with n > 2 because the
lower dimensions contribute to wire density. The maximum density, however, is bounded by

Drnax

?-l *-l
2wﬁ2k‘=kﬁ2k'-ks/_(k"l)

1
kvVN (%‘11) < (k_fi) B.

C)

A plot of wire density as a function of position for one row of a binary 20-cube is shown in
Figure 6. The density is very low at the edges of the cube and quite dense near the center.
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W i
4 ‘
'.{; The peak density for the row is 1364 at position 341. Compare this density with the bisection ¢
w ‘e width of the row, which is 1024. In contrast, a two-dimensional torus has a wire density of
v L 1024 independent of position. One advantage of high-radix networks is that they have a very
;'.: uniform wire density. They make full use of available area.
&
:i: Each processing node connects to 2n channels (n input and n output) each of which is § bits
::: wide. Thus, the number of pins pei processing node is
N, = nk. (9)
)
A plot of pin density as a function of dimension for ¥ = 256, 16K and 1M nodes® is shown
‘,, in Figure 7. Low-dimensional networks have the disadvantage of requiring many pins per
processing node. A two-dimensional network with 1M nodes (not shown) requires 2048 pins _
! j and is clearly unrealizable. However, the number of pins decreases very rapidly as the dimension, 3
L n, increases. Even for 1M nodes, a dimension 4 node has only 128 pins. All of the configurations :
oo that give low latency also give a reasonable pin count.
¥, L]
0y 3.1 Latency
; Latency, T}, is the sum of the latency due to the network and the latency due to the processing
node, '
) Ti = Toet + Toode- (10) .
K} 3 - - =
:". 'Sf; 1K = 1024 and, 1M = 1K x 1K = 1048576.
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In this paper we are concerned only with Tpe. Techniques to reduce Tpoge are described in [5] : .
and [9]. ! )
If we select two processing nodes, P;, P;, at random, the average number of channels that must N ol
be traversed to send a message from P; to P; is given by N
i,
k-1 .
D= ( - )n. (11) .‘
"3
L4
The average latency of a k-ary n-cube is calculated by substituting (7) and (11), into (3) -]
k-1 2L
e ((85) 14 ).
'
Figure 8 shows the average network latency, The, a8 a function of dimension, n, for k-ary :-‘-
n-cubes with 2% (256), 2'* (16K), and 2%° (1M) nodes. The left most data point in this Y
figure corresponds to a torus (n = 2) and the right most data point corresponds to a binary -
n-cube (k = 2). This figure assumes constant wire delay, T., and a message length, L, of o
150 bits. This choice of message length was based on the analysis of a number of fine-grain )
concurrent programs [5]. Although constant wire delay is unrealistic, this figure illustrates that &
even ignoring the dependence of wire delay on wire length, low-dimensional networks achieve 0
lower latency than high-dimensional networks. Y
‘For the sake of comparison we allow radix to take on mon-integer values. For some of the dimensions :L':
considered, there is no integer radix, &, that gives the correct aumber of nodes. In fact, this limitation can be )
overcome by constructing » mized-radis cube. ey M
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The latency of the tori on the left side of Figure 8 is limited almost entirely by distance. The
latency of the binary n-cubes on the right side of the graph is limited almost entirely by aspect
ratio. With bit serial channels, these cubes take 150 cycles to transmit their messages across a
single channel.

In an application that exploits locality of communication, the distance between communicating
objects is reduced. In such a situation, the latency of the low-dimensional networks (the left side
of Figure 8) is reduced. High-dimensional networks, on the other hand, cannot take advantage
of locality. Their latency will remain high.

In applications that send short messages, the component of latency due to message length is
reduced resulting in lower latency for high-dimensional networks (the right side of Figure 8).

In general the lowest latency is achieved when the component of latency due to distance, D,
and the component due to message length, ffy, are approximately equal, D = f§. For the three
cases shown in Figure 8, minimum latencies are achieved for n = 2, 4, and 5 respectively.

The longest wire in the system becomes a bottleneck that determines the rate at which each
channel operates, T.. The length of this wire is given by

1= k31, (13)

If the wires are sufficiently short, delay depends logarithmically on wire length. If the channels
are longer, they become limited by the speed of light, and delay depends linearly on channel
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length. Substituting (13) into (4) and (5) gives

l+log l=1+ (-'21 - l) log, k logarithmic delay

T.
1=k%? linear delay.

We substitute (14) into (12) to get the network latency for these two cases:

(1 + (-'2-'- - 1) log, k) ((5;_1) n+ %) logarithmic delay
T x (15)

(k2-) ((" = 1) n+ 3,:5) linear delay.

Figure 9 shows the average network latency as a function of dimension for k-ary n-cubes with
2% (256), 2!* (16K), and 229 (1M) nodes, assuming logarithmic wire delay and a message length,
L, of 150. Figure 10 shows the same data assuming linear wire delays. In both figures, the left
most data point corresponds to a torus (n = 2) and the right most data point corresponds to
a binary n-cube (k = 2).

In the linear delay case, Figure 10, a torus (n = 2) always gives the lowest latency. This
is because a torus offers the highest bandwidth channels and the most direct physical rout -
between two processing nodes. Under the linear delay assumption, latency is determined solely
by bandwidth and by the physical distance traversed. There is no advantage in having long
channels.

Under the logarithmic delay assumption, Figure 9, a torus has the lowest latency for small
networks (N = 256). For the larger networks, the lowest latency is achieved with slightly higher
dimensions. With N = 16K, the lowest latency occurs when n is three®, With N = 1M, the
lowest latency is achieved when n is 5. It is interesting that assuming constant wire delay does
not change this result much. Recall that under the (unrealistic) constant wire delay assumption,
Figure 8, the minimum latencies are achieved with dimensions of 2, 4, and 5 respectively.

The results shown in Figures 9 through 8 were derived by comparing networks under the
assumption of constant wire cost to a binary n-cube with W = 1. For small networks it is
possible to construct binary n-cubes with wider channels, and for large networks (e.g., 1M
nodes) it may not be possible to construct a binary n-cube at all. The available wiring area
grows as N $ while the bisection width of a binary n-cube grows as N. In the case of small
networks, the comparison against binary n-cubes with wide channels can be performed by
expressing message length in terms of the binary n-cube’s channel width, in effect decreasing
the message length for purposes of comparison. The net result is the same: lower-dimensional
networks give lower latency. Even if we perform the 256 node comparison against a binary
n-cube with W = 16, the torus gives the lowest latency under the logarithmic delay model,
and a dimension 3 network gives minimum latency under the constant delay model. For large

In an actual machine the dimension » would be restricted to be an evea integer.
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networks, the available wire is less than assumed, so the effective message length should be
increased, making low-dimensional networks look even more favorable.

In this comparison we have assumed that only a single bit of information is in transit on each
wire of the network at a given time. Under this assumption, the delay between nodes, T, is
equal to the period of each node, T;,. In a network with long wires, however, it is possible to
have several bits in transit at once. In this case, the channel delay, T, is a function of wire
length, while the channel period, T, < T, remains constant. Similarly, in a network with very
short wires we may allow a bit to ripple throngh several channels hefore sending the next bit.
In this case, T, > T.. Separating the coefficients, 7. and T}, (3) becomes

Tne‘ = (TcD + T’%) . (16)

The net effect of allowing T, # T}, is the same as changing the length, L, by a factor of ;'f and
does not change our results significantly.

When wire cost is considered, low-dimensional networks (e.g., tori) offer lower latency than
high-dimensional networks (e.g., binary n-cubes). Intuitively, tori outperform binary n-cubes
because they better match form to function. The logical and physical graphs of the torus are
identical; Thus, messages always travel the minimum distance from source to destination. Im a
binary n-cube, on the other hand, the fit between form and function is not as good. A message
in a binary n-cube embedded into the plane may have to traverse considerably more than the
minimum distance between its source and destination.

3.2 Throughput

Throughput, another important metric of network performance, is defined as the total number
of messages the network can handle per unit time. One method of estimating throughput is to
calculate the capacity of a network, the total number of messages that can be in the network
at once. Typically the maximum throughput of a network is some fraction of its capacity. The
network capacity per node is the total bandwidth out of each node divided by the average
number of channels traversed by each message. For k-ary n-cubes, the bandwidth out of each
node is nW, and the average number of channels traversed is given by (11), so the network
capacity per node is given by
n
retw ()

NI

The network capacity is independent of dimension. For a constant wire density, there is a
constant network capacity.

an

Throughput will be less than capacity because contention causes some channels to block. This
contention also increases network latency. To simplify the analysis of this contention, we make
the following assumptions:
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Figure 11: Contention Model for A Network

o Messages are routed using e-cube routing (in order of decreasing dimension) [6]. That is

a message at node aq,...,a,-1 destined for node by, ...,b,-; is first routed in dimension
! n — 1 until it reaches node ay,...,8n-3,b4-1. The message is then routed in dimension
» n — 2 until it reaches node ao,...,8n-3,bn-2,0n-1, and 30 on. As shown in Figure 11,

; this assumption allows us to consider the contention in each dimension separately.
" o The traffic from each node is generated by a Poisson process with arrival rate Agi.
:_ o Message destinations are uniformly distributed and independent.

The arrival rate of Ag}& corresponds to Ag = 2% At the destination, each flit is serviced
as soon as it arrives, so the service time at the sink is Ty = b = 3[' Starting with Ty we will
calculate the service time seen entering each preceding dimension.

‘ For convenience, we will define the following quantities:

=1
v -k'

As =17Ag,

An =(1-17)As,

Ass =73, (18)
Asr = 7(1 - 7)AE,

Ars = 7(1 - 7)Ag,and

Arr = (1-17)"2g.

@ Consider a single dimension, i, of the network as shown in Figure 12. All messages incur
N a latency, Tg, due to contention on entering the dimension. Those messages that are routed
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Figure 12: Contention Model for A Single Dimension

incur an additional latency, Tr;, due to contention during routing. The rate Ar message stream
entering the dimension is composed of two components: a rate As stream that skipped the
previous (i + 1**) dimension, and a rate Ag stream that was routed in the previous dimension.
These two streams are in turn split into components that will skip the i*® dimension (\ss and
ARs) and components that will be routed in the i*® dimension (Asg and Agg). The entering
latency seen by one component (say Aggr) is given by multiplying the probability of a collision
(in this case AsrT;;1) by the expected latency due to a collision, (in this case Z'.:E’Im) The
components that require routing must also add the latency due to contention during routing,
Thi. Adding up the four components with appropriate weights gives the following equation for
Tin1-

Tisr = Ti+ (1= M)Tri + 7(1 = 1°Ae(T: + Tri) + v°(1 = 1)AeTs. (19)

For large k, gamma is small and the la.tency is approximated by T4, = T; + TR;. For k =
(binary n-cubes), T; = 0; thus, Tiy; = T; + 245,

To calculate the routing latency, Tg;, we use the model shown in Figure 13. Given that a message
is to be routed in a dimension, the expected number of channels traversed by the message is
f one entering channel and 0 = ‘73 continuing channels. Thus, the average message rate on
channels continuing in the dimension is Ac = cAg. Using virtual dmmelo and e-cube routing,
the actual continuting rate on the ;' channel (outer spxn.l) isAci=(- "TP)'\R To calculate
TR we need only the average rate.

The service time in the last continuing channel in dimension § s Ti(e-1) = T;. Once we know
the service time for the j*® channel, T;;, the additional service time due to contention at the
j — 1** channel is given by multiplying the probability of a collision, AgT;o, by the expected
waiting time for a collision, T;‘ Repeating this calculation o times gives us Tj,o.
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Equation (20) is valid only when A¢c < 9 If the message rate is higher than this limit, there
is no steady-state solution and latency becomes infinite. There are two solutions to (20). Here
we consider only the smaller of the two latencies. The larger solution corresponds to a state
that is not encountered during normal operation of a network.

To calculate T; we also need to consider the possibility of a collision on the entering channel.

Tpi = Tio (1+"°2T'°) T.. (21)

If sufficient queueing is added to each network node, the service times do not increase, only the
latency and equations (21) and (19) become.

Tpi= (I—_TS'EF) (l + ﬁ) -T, (22)

Tior =T+ (1= )Tai+ (3(1-7)° +9°(1- 7)) AsTo. (23)

To be effective, the total queneing between the source and destination should be greater than
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Figure 14: Latency vs. Traffic (A) for 1K node networks: 32-ary 2-cube, 4-ary 5-cube, and

binary 10-cube, L=200bits. Solid line is predicted latency, points are measurements taken from
a simulator.

the expected increase in latency due to blocking. One or two flits of queueing per stage is
usually sufficient. The analysis here is pessimistic in that it assumes no queueing,

Using equation (19), we can determine (1) the maximum throughput of the network and 2)
how network latency increases with traffic.

Figures 14 and 15 show how latency increases as a function of applied traffic for 1K node and 4K
node k-ary n-cubes. The vertical axis shows latency in cycles. The horizontal axis is traffic per
node, A, in bits/cycle. The figures compare measurements from a network simulator (points)
to the latency predicted by (21) (lines). The simulation agrees with the prediction within a few
percent until the network approaches saturation.

For 1K networks, a 32-ary 2-cube always gives the lowest latency. For 4K networks, a 16-

ary 3-cube gives the lowest latency when A < 0.2. Because latency increases more slowly for
2-dimensional networks, a 64-ary 2-cube gives the lowest latency when ) > 0.2.

At the left side of each graph (A = 0), latency is given by (12). As traffic is applied to the
network latency increases slowly due to contention in the network until saturation is reached.
Saturation occurs when ) is between 0.3 and 0.5 depending on the network topology. Networks g
should be designed to operate on the flat portion of the curve (A < 0.25). A

£
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§-cube, and binary 10-cube, L=200bits.
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1K Nodes [l 4K Nodes
5 10 || 2 3 4 6
4 2 || 64 16 8 4
0411043 10.351031)031]0.36
.1]128.]233. | 70.7 | 65.2 | 79.9 | 135.
Latency A = 0.2 5] 161.]269. [| 73.1 | 70.3 | 112. | 181.
Latency A =0.3 [ 59.3 [221.] 317. }| 78.6 | 135. | 245. | 287.

Table 1: Maximum Throughput as a Fraction of Capacity and Blocking Latency in Cycles

When the network saturates, throughput levels off as shown in Figures 16 and 17. These figures
show how much traffic is delivered (vertical axis) when the nodes attempt to inject a given
amount of trafic (horizontal axis). The curve is linear (actual = attempted) until saturation
is reached. From this point on, actual traffic is constant. This plateau occurs because (1) the
network is source queued, and (2) messages that encounter contention are blocked rather than
aborted. In networks where contention is resolved by dropping messages, throughput usually
decreases beyond saturation.

To find the maximum throughput of the network, the source service time, T, is set equal to
the reciprocal of the message rate, Ag, and equations (19), (20), and (21) are solved for Ag.

The maximum throughput as a fraction of capacity for k-ary n-cubes with 1K and 4K nodes is
tabulated in Table 1. Also shown is the total latency for L = 200bit messages at several message
rates. The table shows that the additional latency due to blocking is significantly reduced as
dimension is decreased.

In networks of constant bisection width, the latency of low-dimensional networks increases more
slowly with applied traffic than the latency of high-dimensional networks. At A = 0.2, the 32-
ary 2-cube has =~ § the latency of the binary 10-cube. At this point, the additional latency
due to contention in the 32-ary 2-cube is. 7T, compared to 64T, in the binary 10-cube. At
moderate loads, low-dimensional networks may outperform higher-dimensional networks with
lower zero-load latency. For example, a 16-ary 3-cube has lower zero-load latency than a 64-ary
2-cube (47.5 vs. 69.25). However, the 64-ary 2-cube has lower latency when A = 0.3 (78.6 vs
135).

Intuitively, low-dimensional networks handle contention better because they use fewer channels
of higher bandwidth and thus get better queueing performance. The shorter service times, f,
of these networks results in both a lower probability of collision, and a lower expected waiting
time in the event of a collision. Thus the blocking latency at each node is reduced quadratically
as k is increased. Low-dimensional networks require more hops, D = 241} and have a higher
rate on the continuing channels, A\c. However, messages travel on the continuing channels more
frequently than on the entering channels, thus most contention is with the lower rate channels.
Having fewer channels of higher bandwidth also improves hot-spot throughput as described
below.
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3.8 Hot Spot Throughput

In many situations traffic is not uniform, but rather is concentrated into Aot spots. A hot spot
is a pair of nodes that accounts for a disproportionately large portion of the total network
traffic. As described by Pfister (16} for a shared-memory computer, hot-spot traffic can degrade
performance of the entire network by causing congestion.

The hot-spot throughput of a network is the maximum rate at which messages can be sent
frora one specific node, F;, to another specific node, P;. For a k-ary ntcube with deterministic
routing, the hot-spot throughput, Oyg, is just the bandwidth of a single channel, W. Thus,
under the assumption of constant wire cost we have

Ous=W=k-1. (24)

Low-dimensional networks have greater channel bandwidth and thus have greater hot-spot
throughput than do high-dimensional networks. Intuitively, low-dimensional networks operate
better under non-uniform loads because they do more resource sharing. In an interconnection
network the resources are wires. In a high-dimensional network, wires are assigned to particular
dimensions and cannot be shared between dimensions. For example, in a binary n-cube it is
possible for a wire to be saturated while a physically adjacent wire assigned to a different
dimension remains idle. In a torus all physically adjacent wires are combined into a single
channel that is shared by all messages that must traverse the physical distance spanned by the
channel.

4 Conclusion

Under the assumption of constant wire bisection, low-dimensional networks with wide channels
provide lower latency, less contention, and higher hot-spot throughput than high-dimensional
networks with narrow channels. Minimum network latency is achieved when the network radix,
k, and dimension, n, are chosen to make the components of latency due to distance, D, and
aspect ratio, b approximately equal. The minimum latency occurs at a very low dimension, 2
for up to 1024 nodes.

Low dimensional networks reduce contention because having a few high-bandwidth channels
results in more resource sharing and thus better queuneing performance than having many low-
bandwidth channels. While network capacity and worst-case blocking latency are independent
of dimension, low-dimensional networks have a higher maximum throughput and lower average
blocking lateacy than do high-dimensional networks. Improved resource sharing also gives
low-dimensional networks higher bot-spot throughput than high-dimensional networks.

The results of this paper have all been made under the assumption of constant channel delay,
independent of channel length. The main result, that low-dimensional networks give minimum
latency, however, does not change appreciably when logarithmic or linear delay models are
considered. In choosing a delay model one must consider how the delay of a switching node
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compares to the delay of a wire. Current VLSI routing chips [7] have delays of tens of nanosec-
onds, enough time to drive several meters of wire. For such systems a constant delay model is
adequate. As chips get faster and systems get larger, however, a linear delay model will more
accurately reflect system performance.

Fat-tree networks have been shown to be universal in the sense that they can efficiently simulate
any other network of the same volume [13]. However, the analysis of these networks has not
considered latency. k-ary n-cubes with appropriately chosen radix and dimension are also
universal in this sense. A detailed proof is hevand the scnpe of this paper. Intuitively. one
cannot do any better than to fill each of the three physical dimensions with wires and place
switches at every point of intersection. Any point-to-point network can be embedded into such
2 3-D mesh with no more than a constant increase in wiring length.

This paper has considered only direct networks [17). The results do not apply to indirect net-
works. The depth and the switch degree of an indirect network are analogous to the dimension
and radix of a direct network. However, the bisection width of an indirect network is indepen-
dent of switch degree. Because indirect networks do not exploit locality it is not possible to
trade off diameter for bandwidth. There is little reason to construct an indirect network. A
high-bandwidth direct network would provide the same function with increased performance:

The low-dimensional k-ary n-cube provide a very general communication media for digital sys-
tems. These networks have been developed primarily for message-passing concurrent computers.
They could also be used in place of a bus or indirect network in a shared-memory concurrent
computer, in place of a bus to connect the components of a sequential computer, or to connect
subsystems of a special purpose digital system. With VLSI communication chips the cost of
implementing a network node is comparable to the cost of interfacing to a shared bus, and the
performance of the network is considerably greater than the performance of a bus.

The Torus Routing Chip (TRC) is a VLSI chip designed to implement low-dimensional k-
ary n-cube interconnection networks (7). The TRC performs wormhole routing in arbitrary
k-ary n-cube interconnection networks. This self-timed chip was functional on first silicon. A
single TRC provides 8-bit data channels in two dimensions and can be cascaded to add more
dimensions or wider data channels. A TRC network can deliver a 150-bit message in a 1024
node 32-ary 2-cube with an average latency of 7.543, an order of magnitude better performance
than would be achieved by a binary n-cube with bit-serial channels. A new routing chip, the
Network Design Frame \ NDF), currently under development, is expected to improve this latency
to = 1us.[10]

Now that the latency of communication networks has been reduced to a few microseconds the
latency of the processing nodes, Tpo,4,, dominates the overall latency. To efficiently make use of
a low-latency communication network we need a processing node that interprets messages with
very little overhead. The design of such a message-driven processor is currently underway (5]

[9].

The real challenge in concurrent computing is software. The development of concurrent soft-
ware is strongly influenced by available concurrent hardware. We hope that by providing
machines with higher performance internode communication we will encourage concurrency to
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be exploited at a finer grain size in both system and application software.
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